Student Number

2023 TRIAL EXAMINATION

Mathematics Extension 2

Total marks: Section I – 10 marks (pages 3–7) 100 . Attempt Questions 1–10 . Attempt Questions 1–10 . Allow about 15 minutes for this section Section II – 90 marks (pages 8–13) . Attempt Questions 11–16	General Instructions	 Reading time - 10 minutes Working time - 3 hours Write using black pen Calculators approved by NESA may be used A reference sheet is provided at the back of this paper
Total marks: 100Section I – 10 marks (pages 3–7). Attempt Questions 1–10 . Allow about 15 minutes for this sectionSection II – 90 marks (pages 8–13) . Attempt Questions 11–16		reasoning and/ or calculations
 Allow about 2 hours and 45 minutes for this section 	Total marks: 100	 Section I – 10 marks (pages 3–7) Attempt Questions 1–10 Allow about 15 minutes for this section Section II – 90 marks (pages 8–13) Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Section I

10 Marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1. Let *z* be a complex number such that $z^2 = \frac{i}{z}$. Which of the following is a possible value for *z*?
 - (A) 0 + i
 - (B) -1+i
 - (C) $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ (D) $\frac{\sqrt{3}}{2} - \frac{1}{2}i$
- **2.** Consider the statement: If all walls of this room are green, then this is a green room. Which of the following statements is the contrapositive of this statement?
 - (A) If this is a green room, then all walls of this room are green
 - (B) If this is not a green room, then all walls of this room are not green
 - (C) If this is not a green room, then no walls of this room are green
 - (D) If this is a not green room, then there is at least one wall of this room which is not green

3. Simplify
$$\left(\frac{1}{2}(\sqrt{3}-i)\right)^{2023}$$

(A) $\frac{1}{2}(-\sqrt{3}-i)$ (B) $\frac{1}{2}(-\sqrt{3}+i)$

(C)
$$\frac{1}{2}(\sqrt{3}-i)$$

(D)
$$\frac{1}{2}(\sqrt{3}+i)$$

- 4. Consider the vector u = 3i j 2k. Which of the following vectors is perpendicular to u?
 - (A) 4i + 4j + 2k
 - (B) 3i 1j + 5k

(C)
$$2i - 3j + 3k$$

(D)
$$i_{\sim} - 5j + 3k_{\sim}$$

5. Which of the following is equivalent to the expression $\frac{3x+7}{(x+1)(x^2-2x-3)}$?

(A)
$$\frac{-1}{x+1} + \frac{1}{x-3}$$

(B)
$$\frac{-1}{(x+1)^2} + \frac{1}{x-3}$$

(C)
$$\frac{-1}{x+1} + \frac{x-1}{(x+1)^2} + \frac{1}{x-3}$$

(D)
$$\frac{-1}{x+1} + \frac{-1}{(x+1)^2} + \frac{1}{x-3}$$

6. The argand diagram shows the complex numbers *z* and *w*, where *z* lies in the first quadrant and *w* lies in the fourth quadrant.

Which of the following diagrams best illustrates the complex number *iwz*?

(A) $\frac{1}{6}\cos^{-1}3x + c$

(B)
$$\frac{1}{6}\sin^{-1}3x + c$$

(C)
$$\frac{1}{\sqrt{3}}\cos^{-1}\sqrt{3}x + c$$

(D)
$$\frac{1}{\sqrt{3}}\sin^{-1}\sqrt{3}x + c$$

8. A particle is describing simple harmonic motion in a straight line with an amplitude of 6m. Its speed is 4m/s when the particle is 3m from the centre of motion. What is the period of the motion?

(A)
$$\frac{3\sqrt{3}\pi}{2}$$

(B)
$$\frac{9\pi}{2}$$

(C)
$$\frac{3\sqrt{3}\pi}{4}$$

(D)
$$\frac{9\pi}{4}$$

9. Which of the following represents the vector projection of \overrightarrow{OA} onto \overrightarrow{OB} given A(1, 3, -2) and B(2, -2, 1)?

(A)
$$\begin{bmatrix} -\frac{4}{3} \\ \frac{4}{3} \\ \frac{2}{-\frac{2}{3}} \end{bmatrix}$$

(B) $\begin{bmatrix} \frac{4}{3} \\ \frac{4}{3} \\ \frac{2}{-\frac{2}{3}} \end{bmatrix}$
(C) $\begin{bmatrix} -\frac{4}{9} \\ \frac{4}{9} \\ \frac{2}{-\frac{9}{9}} \end{bmatrix}$
(D) $\begin{bmatrix} \frac{-2}{3} \\ \frac{-6}{3} \\ \frac{4}{3} \end{bmatrix}$

10. A particle is moving along a straight line so that initially its displacement is x = 2, its velocity is v = 2 and its acceleration is a = 4. Which of the following is a possible equation of the motion of the particle?

- (A) $v = x^2 + 2x$
- (B) $v = 2 + 4 \ln(x 1)$
- (C) $v = 2\sin(x-2) + 2$
- (D) $v^2 = 4(x^2 3)$

End of Section I

Section II

90 Marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

Begin each question in a new writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a new Writing Booklet.

(a) Let
$$z = 1 - 4i$$
 and $w = 3 + 2i$.
Find:
(i) \overline{w}
(ii) $|wz|$
(ii) $|\overline{w}|$
(iii) $\frac{\overline{w}}{z}$
2

(b) Find

(i)
$$\int \frac{dx}{\sqrt{5+2x-x^2}}$$
 2

(ii)
$$\int \frac{x^2 - 1}{x^2 + 4} dx$$
 2

(c) Solve
$$z^2 + (2+i)z + 2 - 2i = 0$$
 3

(d) Prove by contradiction that
$$\sqrt{7}$$
 is irrational. 3

End of Question 11

Question 12 (14 marks) Begin a new Writing Booklet.

(a) Using substitution of $x = \cos^2 \theta$, evaluate 4 $\int_0^{\frac{1}{2}} \sqrt{\frac{x}{1-x}} dx$

(b) On an Argand diagram, sketch the region defined by $-\frac{\pi}{4} < \arg(z-i) < \frac{\pi}{4}$ $Re(z) \le 3$

(c) Find
$$\int e^x \sin x \, dx$$
. 4

- (d) The point P(x, y), representing the complex number *z*, moves in an Argand diagram such that |z - 6| = |z + 2i|.
 - Show that the path that *P* traces out has the formula 3x + y 8 = 0. (i) 2
 - Find the minimum value of |z| as *P* moves along its path. (ii)

End of Question 12

1

Question 13 (15 marks) Begin a new Writing Booklet.

(a) *M* is the midpoint of side *AB* in triangle *ABC*.

Using vectors, show that $\left|\overrightarrow{AC}\right|^2 + \left|\overrightarrow{BC}\right|^2 = 2\left(\left|\overrightarrow{CM}\right|^2 + \left|\overrightarrow{AM}\right|^2\right).$

(b) A sequence is defined recursively as $u_0 = 5$, $u_n = 2u_{n-1} + 1$ for $n \ge 1$. 3 By induction, prove that $u_n = 3(2^{n+1}) - 1$ for all positive integers n.

(c)	(i)	Express 4 <i>i</i> in exponential form.	1
	(ii)	Hence, find the 4^{th} roots of $4i$.	2
	(iii)	Sketch the roots on an Argand diagram.	2
(d)	(i)	Prove that $a^2 + b^2 \ge 2ab$	1

(ii) Hence, or otherwise, prove that $(p+2)(q+2)(p+q) \ge 16pq$, 2 where *p* and *q* are positive real numbers.

End of Question 13

Question 14 (15 marks) Begin a new Writing Booklet.

(a) A stone is released on the surface of the ocean, at which point it immediately sinks. Let gravity be 10 ms^{-2} and the resistance due to the water is proportional to the square of the velocity.

(i) Explain why the acceleration of the stone can be given by
$$a = 10 - \frac{k}{m}v^2.$$

(ii) Given
$$\frac{k}{m} = \frac{1}{40}$$
, show that $v = \frac{20(e^t - 1)}{e^t + 1}$.

(iii) Using
$$a = v \frac{dv}{dx}$$
, show that $x = 20 \ln \left(\frac{400}{400 - v^2}\right)$. 2

(b) r_1 and r_2 are two lines with vector equations:

$$r_{1} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
$$r_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$$
where $\lambda, \mu \in \mathbb{R}$.

(i)	Show that these two lines intersect.	2
(ii)	Find the angle between the lines.	1
(iii)	Find the shortest distance from the point $P(1, 2, 2)$ to the line $r_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$	3

End of Question 14

Question 15 (16 marks) Begin a new Writing Booklet.

(a) Prove that
$$9^{n+1} - 2^{n+1}$$
 is divisible by 7 for all $n \ge 0$. 3

(b) A particle moves in a straight line, experiencing simple harmonic motion. At time *t* seconds its displacement from a fixed point *O* in the line is *x* metres, given by:

$$x = 1 + \sqrt{2}\cos\left(t - \frac{\pi}{4}\right)$$

- Show that $\ddot{x} = -(x 1)$ (i)
- (ii) Find the time taken for the particle to first pass through the point *O*.
- (iii) Find in simplest exact form, the average speed of the particle during 2 one complete oscillation of its motion.
- (c) *OPQR* is a trapezium with $\overrightarrow{OP} = k \overrightarrow{RQ}$. Let $p = \overrightarrow{OP}$ and $r = \overrightarrow{OR}$.

S and T are midpoints of OQ and PR respectively.

(i)	Find OS in terms of p and r .	2
	~ ~	

- Find \overrightarrow{ST} in terms of p and r. (ii)
- (iii) Deduce the value of *k* required for *RSTQ* to be a parallelogram. 2

End of Question 15

1

2

2

Question 16 (15 marks) Begin a new Writing Booklet.

(a) Evaluate
$$\int \cos^3 x \sin^2 x \, dx$$
. 3

(b) A stranded sailor, armed with a flare stands atop a headland, 40m above sea level. The flare is fired with a velocity of 20i - 6j + 12k, where i, j and k are unit vectors in the east, north and vertically up directions, respectively. The acceleration of the cannonball due to the combined effects of gravity, air resistance and the wind is -6i + 10j - 4k.

(i)	Find the displacement vector for the flare with respect to <i>t</i> .	3
(ii)	Find the highest point on the trajectory of the flare.	2
(iii)	Find the time taken for the flare to plunge into the ocean.	1
(iv)	At what angle to the horizontal was the flare fired?	1

(c) Let
$$I_n = \int_0^1 (1 - x^2)^{\frac{n}{2}} dx$$
, where $n \ge 0$ is an integer.

(i) Show that
$$I_n = \frac{n}{n+1} I_{n-2} \text{ for every integer } n \ge 2.$$

(ii) Hence evaluate I_5 .

End of Examination

2023 12MXX Trial – Solutions and

$$3. \left(\frac{\sqrt{3} - \sqrt{3}}{2}\right)^{2023} = \left(\left(\frac{\sqrt{3} - \frac{1}{2}}{2}\right)^{3}\right)^{574} \left(\frac{\sqrt{3} - \frac{1}{2}}{22}\right) - \frac{1}{12} - \frac{1}{12$$

4.
$$\mu = \frac{3}{2} \cdot \frac{1}{2} - \frac{2}{2} \cdot \frac{1}{2} - \frac{2}{2} \cdot \frac{1}{2} - \frac{2}{2} \cdot \frac{1}{2} - \frac{2}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2}$$

5.
$$\frac{3x+7}{(x+1)^{2}(x-3)} = \frac{A}{2x+1} + \frac{B}{(x+1)^{2}} + \frac{C}{(x+1)^{2}}$$

$$3x+7 = A(2x+1)(x-3) + B(2x-3) + C(2x+1)^{2}$$

$$3x-1 \implies 4 = -4B$$

$$B = -1$$

$$x = 3 \implies 16 = 4^{2}(x-1)$$

$$C = 1$$

$$2^{2} \implies 0 = A + C$$

$$A = -1$$

Tuesday, 18 July 2023 6:05 PM

$$b_{1} = \int \frac{dx}{\sqrt{5-(2x-x^2)}} = \int \frac{dx}{\sqrt{6-(x^2-2x+1)}} = \int \frac{dx}{\sqrt{6-(x+1)^2}} = \int \frac{dx}{\sqrt{6-(x+1)^2}}$$

11.
$$\int \frac{2^{2}}{2^{2}+4} dx = \int \frac{2^{2}+4}{2^{2}+4} dx$$
$$= \int \left(\left(1 - \frac{5}{2^{2}+4} \right) dx \right)$$
$$= 2^{2} - 5^{2} + 4^{2}$$

C.
$$z^{2} + (2\pi i)z + 2 - 2i = 0$$

 $z = -(2\pi i) \pm \sqrt{(2\pi i)^{2} - 4(i)(2-2i)}$
 $Q(i)$
 $\Delta = 3 + 4i - 8 + 6i$
 $= -5 + 12i$
 $12i$
 $12i$ $(2\pi i)^{2} = -5 + 12i$
 $12i$ $(2\pi i)^{2} = -5 + 12i$
 $2\pi i - 2 - 2i$
 $2\pi i - 2 - 2i$
 $2\pi i - 2 - 2i$
 $2\pi i - 2 - 2i$

d. let J7 be retained

$$\therefore J7 = a ab \in R$$

 $ard = ard b have no
common divisor other than 1.
 $a = bJ7$
 $a^2 = 7b^6$
 $a = 7c^6$
 $a = 7c^6$ flen 7 must
 $divide a.$
 $brie a = 7c^6$ for constant c.
 $\therefore (7c)^2 = 7b^2$
 $ard 7c^2 = b^2$
 $ard 7c^$$

Tuesday, 18 July 2023 6:05 PM

A)
$$\mathcal{X}_{-} \cos^{2}\Theta$$

 $dx = 2\cos\Theta(-\sin\Theta)d\Theta$
 $= 2\int_{\pm}^{\pm}\int \frac{\cos\Theta}{\sin\Theta}d\Theta$
 $= 2\int_{\pm}^{\pm}\int \frac{\cos\Theta}{\sin\Theta}d\Theta$
 $= 2\int_{\pm}^{\pm}\frac{\cos\Theta}{\sin\Theta}d\Theta$
 $= 2\int_{\pm}^{\pm}\frac{\cos\Theta}{\sin\Theta}d\Theta$
 $= 2\int_{\pm}^{\pm}\cos\Theta d\Theta$
 $= 2\int_{\pm}^$

$$2\int e^{\chi} \sin \chi d\chi = e^{\chi} (\sin \chi - \cos \chi) - \frac{1}{2} e^{\chi} \sin \chi d\chi = e^{\chi} (\sin \chi - \cos \chi)$$

$$\therefore \int e^{\chi} \sin \chi d\chi = \frac{e^{\chi}}{2} (\sin \chi - \cos \chi)$$

$$d. i. |2-6| = |2 + 2i|$$

$$|\chi + iy - 6| = |1 + iy + 2i|$$

$$|1 - 6 + iy|^{2} = |\chi + i(y + 2)|^{2}$$

$$(\chi - 6)^{2} + y^{2} = \chi^{2} + (y + 2)^{2}$$

$$\chi - [2\chi + 36 + y] = \chi^{2} + g^{2} + (y + 2)^{2}$$

$$\chi - [2\chi + 36 + y] = \chi^{2} + g^{2} + (y + 1)^{2}$$

$$I\chi + (1y - 3) = 0$$

$$I = I = I$$

nearest the origin => (0,0) to
$$32 + y - 8 = 0$$

$$d = \frac{|3(0) + 0 - 8|}{\sqrt{3^2 + 1^2}}$$

$$= \frac{|-8|}{\sqrt{10}}$$

$$= \frac{4\sqrt{10}}{5}$$

c.i.
$$4i - 4ie^{\frac{\pi}{2}}$$

ii $let z^{*} - 4i(1 + 24)$
 $z = 52e^{\frac{\pi}{4}}(1 + 4k)$
 $z = 52e^{\frac{\pi}{4}}(52e^{\frac{\pi}{4}}), 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}$
 $z = 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}$
 $z = 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}, 52e^{\frac{\pi}{4}}$
 $z = 52e^{\frac{\pi}{4}}, 52$

Tuesday, 18 July 2023 6:05 PM

a) 7. Taking downsech, as poshie direction

$$f^{LN} = \inf_{against tr.} existence acting
against tr.
So ma = mg - kiP
i. $k = \frac{1}{40}$

$$f^{L} = \frac{1}{40} = \frac{1}{40} + \frac{1}{4$$$$

l

$$\begin{array}{c} 1 & \text{at } = 3 & \text{if } \frac{2 \circ (-1)}{e^{2 + 1}} \\ & = 18.10296507 \text{ ms}^{-1} & \text{i - correct } i \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & &$$

$$\begin{aligned} \mathcal{DP} &= \mathcal{R} - \mathcal{P}^{(p)} \mathbf{j}_{d} \mathcal{R} \\ &= (-1, 2, 1) - (0, \frac{1}{2}, -\frac{1}{2}) \\ &= (-1, \frac{3}{2}, \frac{3}{2}) \\ &= (-1, \frac{3}{2}, \frac{3}{2}) \\ &\text{IDP} = \sqrt{(-1)^{2} + (\frac{3}{2})^{2} + (\frac{3}{2})^{2}} \\ &= \sqrt{(-1)^{2} + (\frac{3}{2})^{2} + (\frac{3}{2})^{$$

Tuesday, 18 July 2023 6:05 PM

A Prove have
$$def = 2^{n}$$
, $resp.$
 $q^{01} - 2^{n} = q - 2$
 $relact is divide by 7, here the for n=k.$
Assume the for n=k.
 $(-2^{n} + 2^{n}) = 7M$ MeZ
 $ad q^{n} - 7M^{2n} = -ndetin hypothesis$
 $Resp. the observed for n=k.$
 $(-2^{n} + 2^{n}) = 2^{n}$ MeZ
 $ad q^{n} - 7M^{2n} = -ndetin hypothesis$
 $Resp. the observed for n=k.$
 $(-2^{n} + 2^{n}) = 2^{n}$ by whether
 $= 7(m - 2^{n}) + 22^{n}$ by whether
 $= 7(m - 2^{n}) = 2^{n}$
 $= 7(m) - 7^{n}$
 $=$

$$poriad = 2\pi$$

it,

Tuesday, 18 July 2023 6:05 PM

-

a)
$$\int (costs \sin^2 x \, dx)$$

 $= \int ((t \sin^2 x) \sin^2 x \cdot (costs \, dx))$
 $= \int ((sin^2 x - sin^4 x) \cos x \, dx)$
 $= \frac{sin^3 x}{3} - \frac{sin^5 x}{3} + x$
 $= \frac{sin^3 x}{3} - \frac{sin^5 x}{3} + x$
 $= \frac{sin^3 x}{3} - \frac{sin^5 x}{3} + x$

b) 1.
$$\ddot{\chi} = -6\underline{1} + 10\underline{1} - 4\underline{k}$$

 $\dot{\chi} = -6\underline{1}\underline{1} + 10\underline{1}\underline{1} - 4\underline{k}$ + c.
 $\dot{\chi} = -6\underline{1}\underline{1} + 10\underline{1}\underline{1} - 44\underline{k}$ + c.
 $\dot{\chi} = -6\underline{1}\underline{1}\underline{1} + 12\underline{k}$ at $\underline{1} \pm 0$
Hen $c = 20\underline{1}\underline{1} - 6\underline{1}\underline{1} + 12\underline{k}$ at $\underline{1} \pm 0$
Hen $c = 20\underline{1}\underline{1} - 6\underline{1}\underline{1} + 12\underline{k}$ at $\underline{1} \pm 0$
 $\chi = (20-64)\underline{1}\underline{1} + (10-6)\underline{1}\underline{1} + (12-24)\underline{1}\underline{1}\underline{1}$
 $\chi = (20+34)\underline{1}\underline{1} + (54^{2}-64)\underline{1}\underline{1} + (124-24)\underline{1}\underline{1}\underline{1}$
 $\chi = (20+34)\underline{1}\underline{1} + (54)\underline{1}\underline{1} + (124-24)\underline{1}\underline{1}\underline{1} + (124-24)\underline{1}\underline{1}\underline{1} + 24$
 $\chi = (20+34)\underline{1}\underline{1}\underline{1} + 24\underline{1} = 2$
 $\chi = 42-64\underline{1}\underline{1} + 27\underline{1}\underline{1} + 58\underline{1}\underline{1}$
Hybrid point is $(33, 27, 58)$
11. flore needes are when where comparent of χ is 2
 $\chi = 10+64-4^{2}=2$
 $\chi = 20+64-4^{2}=2$
 $\chi = 10+(4-24)+41)=2$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(4-3)^{2}=29$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=164$
 $(3-3)^{2}=1$

2-015